Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Med ; 29(8): 2121-2132, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414899

RESUMEN

Fecal microbiota transplantation (FMT) represents a potential strategy to overcome resistance to immune checkpoint inhibitors in patients with refractory melanoma; however, the role of FMT in first-line treatment settings has not been evaluated. We conducted a multicenter phase I trial combining healthy donor FMT with the PD-1 inhibitors nivolumab or pembrolizumab in 20 previously untreated patients with advanced melanoma. The primary end point was safety. No grade 3 adverse events were reported from FMT alone. Five patients (25%) experienced grade 3 immune-related adverse events from combination therapy. Key secondary end points were objective response rate, changes in gut microbiome composition and systemic immune and metabolomics analyses. The objective response rate was 65% (13 of 20), including four (20%) complete responses. Longitudinal microbiome profiling revealed that all patients engrafted strains from their respective donors; however, the acquired similarity between donor and patient microbiomes only increased over time in responders. Responders experienced an enrichment of immunogenic and a loss of deleterious bacteria following FMT. Avatar mouse models confirmed the role of healthy donor feces in increasing anti-PD-1 efficacy. Our results show that FMT from healthy donors is safe in the first-line setting and warrants further investigation in combination with immune checkpoint inhibitors. ClinicalTrials.gov identifier NCT03772899 .


Asunto(s)
Trasplante de Microbiota Fecal , Melanoma , Animales , Ratones , Trasplante de Microbiota Fecal/métodos , Inhibidores de Puntos de Control Inmunológico , Heces/microbiología , Melanoma/terapia , Inmunoterapia , Resultado del Tratamiento
3.
Mol Ther ; 31(2): 535-551, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36068918

RESUMEN

Immune checkpoint blockade can induce potent and durable responses in patients with highly immunogenic mismatch repair-deficient tumors; however, these drugs are ineffective against immune-cold neuroblastoma tumors. To establish a role for a T cell-based therapy against neuroblastoma, we show that T cell and memory T cell-dependent gene expression are associated with improved survival in high-risk neuroblastoma patients. To stimulate anti-tumor immunity and reproduce this immune phenotype in neuroblastoma tumors, we used CRISPR-Cas9 to knockout MLH1-a crucial molecule in the DNA mismatch repair pathway-to induce mismatch repair deficiency in a poorly immunogenic murine neuroblastoma model. Induced mismatch repair deficiency increased the expression of proinflammatory genes and stimulated T cell infiltration into neuroblastoma tumors. In contrast to adult cancers with induced mismatch repair deficiency, neuroblastoma tumors remained unresponsive to anti-PD1 treatment. However, anti-CTLA4 therapy was highly effective against these tumors. Anti-CTLA4 therapy promoted immune memory and T cell epitope spreading in cured animals. Mechanistically, the effect of anti-CTLA4 therapy against neuroblastoma tumors with induced mismatch repair deficiency is CD4+ T cell dependent, as depletion of these cells abolished the effect. Therefore, a therapeutic strategy involving mismatch repair deficiency-based T cell infiltration of neuroblastoma tumors combined with anti-CTLA4 can serve as a novel T cell-based treatment strategy for neuroblastoma.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Neuroblastoma , Ratones , Animales , Memoria Inmunológica , Neoplasias Colorrectales/patología , Neuroblastoma/genética , Neuroblastoma/terapia
4.
Cells ; 10(5)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-34065010

RESUMEN

The primary function of myeloid cells is to protect the host from infections. However, during cancer progression or states of chronic inflammation, these cells develop into myeloid-derived suppressor cells (MDSCs) that play a prominent role in suppressing anti-tumor immunity. Overcoming the suppressive effects of MDSCs is a major hurdle in cancer immunotherapy. Therefore, understanding the mechanisms by which MDSCs promote tumor growth is essential for improving current immunotherapies and developing new ones. This review explores mechanisms by which MDSCs suppress T-cell immunity and how this impacts the efficacy of commonly used immunotherapies.


Asunto(s)
Inmunosupresores/uso terapéutico , Inmunoterapia/métodos , Células Supresoras de Origen Mieloide/citología , Neoplasias/inmunología , Neoplasias/terapia , Proliferación Celular , Citocinas/metabolismo , Humanos , Tolerancia Inmunológica , Factores Inmunológicos/farmacología , Terapia de Inmunosupresión , Microbiota , Modelos Biológicos , Células Mieloides , Células Supresoras de Origen Mieloide/patología , Neoplasias/patología , Especies Reactivas de Oxígeno , Microambiente Tumoral/inmunología
5.
J Natl Cancer Inst ; 113(7): 823-832, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33432320

RESUMEN

Neoadjuvant immunotherapy involves administering immune checkpoint inhibitors before surgical resection in high-risk resectable disease. This strategy was shown to have a high pathological response rate and prolonged relapse-free survival in randomized trials in melanoma, glioblastoma, and colon cancer with small numbers of patients. In resectable cancers, immune checkpoint inhibitors such as anti-programmed cell death-1 (PD1) and anti-cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) can enhance antitumor immunity by activating antigen-specific T cells found in the primary tumor. These tumor-reactive T cells continue to exert antitumor effects on remaining neoplastic cells after the resection of the primary tumor, potentially preventing relapses from occurring. Based on the scientific rationale and early clinical observations with surrogate survival endpoints, neoadjuvant immunotherapy may provide an effective alternative to other therapeutic strategies such as adjuvant treatment. However, this can be determined only by conducting randomized controlled trials comparing neoadjuvant immunotherapy with the current standard of care for each tumor site. This review discusses the cellular mechanisms that occur during successful neoadjuvant immunotherapy and highlights the clinical data from the available human studies that support the preclinical mechanistic data. Here we also discuss strategies required for successful neoadjuvant immunotherapy, including combination treatment strategies and resistance mechanisms to neoadjuvant treatment.


Asunto(s)
Melanoma , Terapia Neoadyuvante , Humanos , Inmunoterapia , Melanoma/terapia , Recurrencia Local de Neoplasia , Linfocitos T
6.
Cancers (Basel) ; 12(11)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198059

RESUMEN

Pancreatic cancer has a high mortality rate, and its incidence is increasing worldwide. The almost universal poor prognosis of pancreatic cancer is partly due to symptoms presenting only at late stages and limited effective treatments. Recently, immune checkpoint blockade inhibitors have drastically improved patient survival in metastatic and advanced settings in certain cancers. Unfortunately, these therapies are ineffective in pancreatic cancer. However, tumor biopsies from long-term survivors of pancreatic cancer are more likely to be infiltrated by cytotoxic T-cells and certain species of bacteria that activate T-cells. These observations suggest that T-cell activation is essential for anti-tumor immunity in pancreatic cancers. This review discusses the immunological mechanisms responsible for effective anti-tumor immunity and how immune-based strategies can be exploited to develop new pancreatic cancer treatments.

7.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597762

RESUMEN

Natural killer (NK) cells are a subset of innate lymphoid cells (ILC) capable of recognizing stressed and infected cells through multiple germ line-encoded receptor-ligand interactions. Missing-self recognition involves NK cell sensing of the loss of host-encoded inhibitory ligands on target cells, including MHC class I (MHC-I) molecules and other MHC-I-independent ligands. Mouse cytomegalovirus (MCMV) infection promotes a rapid host-mediated loss of the inhibitory NKR-P1B ligand Clr-b (encoded by Clec2d) on infected cells. Here we provide evidence that an MCMV m145 family member, m153, functions to stabilize cell surface Clr-b during MCMV infection. Ectopic expression of m153 in fibroblasts augments Clr-b cell surface levels. Moreover, infections using m153-deficient MCMV mutants (Δm144-m158 and Δm153) show an accelerated and exacerbated Clr-b downregulation. Importantly, enhanced loss of Clr-b during Δm153 mutant infection reverts to wild-type levels upon exogenous m153 complementation in fibroblasts. While the effects of m153 on Clr-b levels are independent of Clec2d transcription, imaging experiments revealed that the m153 and Clr-b proteins only minimally colocalize within the same subcellular compartments, and tagged versions of the proteins were refractory to coimmunoprecipitation under mild-detergent conditions. Surprisingly, the Δm153 mutant possesses enhanced virulence in vivo, independent of both Clr-b and NKR-P1B, suggesting that m153 potentially targets additional host factors. Nevertheless, the present data highlight a unique mechanism by which MCMV modulates NK ligand expression.IMPORTANCE Cytomegaloviruses are betaherpesviruses that in immunocompromised individuals can lead to severe pathologies. These viruses encode various gene products that serve to evade innate immune recognition. NK cells are among the first immune cells that respond to CMV infection and use germ line-encoded NK cell receptors (NKR) to distinguish healthy from virus-infected cells. One such axis that plays a critical role in NK recognition involves the inhibitory NKR-P1B receptor, which engages the host ligand Clr-b, a molecule commonly lost on stressed cells ("missing-self"). In this study, we discovered that mouse CMV utilizes the m153 glycoprotein to circumvent host-mediated Clr-b downregulation, in order to evade NK recognition. These results highlight a novel MCMV-mediated immune evasion strategy.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Células Asesinas Naturales/virología , Lectinas Tipo C/genética , Muromegalovirus/genética , Subfamilia B de Receptores Similares a Lectina de Células NK/genética , Receptores Inmunológicos/genética , Proteínas de la Matriz Viral/genética , Animales , Regulación de la Expresión Génica/inmunología , Prueba de Complementación Genética , Infecciones por Herpesviridae , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Células Asesinas Naturales/inmunología , Lectinas Tipo C/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Muromegalovirus/inmunología , Muromegalovirus/patogenicidad , Células 3T3 NIH , Subfamilia B de Receptores Similares a Lectina de Células NK/inmunología , Receptores Inmunológicos/inmunología , Transducción de Señal , Carga Viral , Proteínas de la Matriz Viral/deficiencia , Proteínas de la Matriz Viral/inmunología , Replicación Viral
8.
Sci Signal ; 11(533)2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29871911

RESUMEN

The transient receptor potential (TRP) family is a large family of widely expressed ion channels that regulate the intracellular concentration of ions and metals and respond to various chemical and physical stimuli. TRP subfamily M member 7 (TRPM7) is unusual in that it contains both an ion channel and a kinase domain. TRPM7 is a divalent cation channel with preference for Ca2+ and Mg2+ It is required for the survival of DT40 cells, a B cell line; however, deletion of TRPM7 in T cells does not impair their development. We found that expression of TRPM7 was required for B cell development in mice. Mice that lacked TRPM7 in B cells failed to generate peripheral B cells because of a developmental block at the pro-B cell stage. The loss of TRPM7 kinase activity alone did not affect the proportion of peripheral mature B cells or the development of B cells in the bone marrow. However, supplementation with a high concentration of extracellular Mg2+ partially rescued the development of TRPM7-deficient B cells in vitro. Thus, our findings identify a critical role for TRPM7 ion channel activity in B cell development.


Asunto(s)
Linfocitos B/citología , Linfocitos B/fisiología , Linfopoyesis , Magnesio/metabolismo , Células Mieloides/fisiología , Canales Catiónicos TRPM/fisiología , Animales , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos C57BL , Células Mieloides/citología
9.
Sci Signal ; 11(533)2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29871912

RESUMEN

Members of the transient receptor potential (TRP) family of ion channels are cellular sensors involved in numerous physiological and pathological processes. We identified the TRP subfamily M member 7 (TRPM7) channel-kinase as a previously uncharacterized regulator of B cell activation. We showed that TRPM7 played a critical role in the early events of B cell activation through both its ion channel and kinase functions. DT40 B cells deficient in TRPM7 or expressing a kinase-deficient mutant of TRPM7 showed defective gathering of antigen and prolonged B cell receptor (BCR) signaling. We showed that lipid metabolism was altered in TRPM7-deficient cells and in cells expressing a kinase-deficient mutant of TRPM7 and suggest that PLC-γ2 may be a target of the kinase activity of TRPM7. Primary B cells that expressed less TRPM7 or were treated with a pharmacological inhibitor of TRPM7 also displayed defective antigen gathering and increased BCR signaling. Finally, we demonstrated that blocking TRPM7 function compromised antigen internalization and presentation to T cells. These data suggest that TRPM7 controls an essential process required for B cell affinity maturation and the production of high-affinity antibodies.


Asunto(s)
Presentación de Antígeno , Linfocitos B/metabolismo , Canales Catiónicos TRPM/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Linfocitos B/citología , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Fosforilación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...